\(BC=CH+HB=24\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BC\cdot BH}=12\left(cm\right)\\AC=\sqrt{BC\cdot CH}=12\sqrt{3}\left(cm\right)\end{matrix}\right.\)
\(BC=CH+HB=24\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BC\cdot BH}=12\left(cm\right)\\AC=\sqrt{BC\cdot CH}=12\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Bài 1 Cho tam giác ABC vuông tại A có đường cao AH .biết BH = 9 cm ,HC = 16 cm .tính AH; AC ;số đo góc ABC (số đo góc làm tròn đến độ)
bài 2 Cho tam giác ABC vuông tại A , đường cao AH. biết AB = 3 cm ,AC = 4 cm. Tính độ dài các cạnh BC, AH và số đo góc ACB (làm tròn đến độ)
Cho tam giác ABC vuông tại A , đường cao AH a, Biết AH = 6 cm , BH = 4,5 cm . Tính AB , AC , BC, HC b, Biết AB=6 cm , BH = 3cm . Tính AH , AC ,HC
Cho tam giác ABC vuông tại A., đường cao AH. Biết BH = 1.8 cm; HC = 3,2 cm.
a. Tính độ dài AH ; AB; AC.
b. Tính số đo góc B và góc C.
c. Tia phân giác của góc B cắt AC tại D. Tính độ dài BD.
(số đo góc làm tròn đến độ, độ dài đoạn thẳng làm tròn đến chữ số thập phân thứ b
1.Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=8cm, HC - HB=8cm
a)Tính HB,HC,AC
b)Vẽ phân giác AD, tính DB, DC, DA.
2. Cho tam giác ABC cân tại A , có AB=AC=10cm, BC= \(4\sqrt{5}\)cm. vẽ đường cao BH.
a) Tính AH
b)Gọi K là hình chiếu của H trên AB. Tính KA, KB, HK
Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc
Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH.
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN
Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH. Biết AH = 12 cm, BC = 25 cm. Tính BH, HC, AB, AC (Vẽ hình mẫu)
Cho tam giác ABC vuông tại A, có AH là đường cao.
1. Biết AH= 2/6 cm, BH = 4 cm.
a) Tính độ dài các đoạn thẳng HC, AC
b) Tính số đo góc ABH (làm tròn đến độ)
2. Cho AC = 3 .AB. Chứng minh: 3.tan C-cotC+ /sinC = sin 45°
3. Lấy điểm M trên đường tròn tâm B bán kính BA (M thuộc nửa mặt phẳng bờ BC, không chứa điểm A). Gọi SBMH là diện tích tam giác BMH, Sạc là diện tích tam giác BCM. Chứng minh rằng: SaMH =SHCM .sinº ACB
Cho tam giác ABC vuông tại A, có AC > AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC
a, Chứng minh AD.AB = AE.AC và tam giác ABC đồng dạng với tam giác AED
b, Cho biết BH = 2 cm, HC = 4,5 cm:
i, Tính độ dài đoạn thẳng DE
ii, Tính số đo góc ABC (làm tròn đến độ)
iii, Tính diện tích tam giác ADE
Cho tam giác ABC vuông ở A, đường cao AH, biết BH = 4 cm, CH = 9 cm. Hãy tính ( kết quả về độ dài là tròn đến chữ số thập phân thứ ba, số đo góc làm tròn đến độ):
a. Dộ dài cạnh AB và đường cao AH.
b. Góc B rồi từ đó tính độ dài cạnh AC.
c. Diện tích tam giác ABC.