Ta có x2 - 2xy + 2y2 -2x + 6y+5 =0
<=> (x2 - 2xy + y2) - (2x - 2y) + (y2 + 4y + 4) + 1 = 0
<=> [(x - y)2 - 2(x - y) + 1] + (y + 2)2 = 0
<=> (x - y - 1)2 + (y + 2)2 = 0
<=> \(\hept{\begin{cases}x-y-1=0\\2\:+y=0\end{cases}}\)
<=> (x; y) = (-1; -2)
Ta có x2 - 2xy + 2y2 -2x + 6y+5 =0
<=> (x2 - 2xy + y2) - (2x - 2y) + (y2 + 4y + 4) + 1 = 0
<=> [(x - y)2 - 2(x - y) + 1] + (y + 2)2 = 0
<=> (x - y - 1)2 + (y + 2)2 = 0
<=> \(\hept{\begin{cases}x-y-1=0\\2\:+y=0\end{cases}}\)
<=> (x; y) = (-1; -2)
tìm x y thuộc z biết x2 - 2xy + 2y2 +2x-6y+4=0
Tìm giá trị nhỏ nhất của biểu thức: Q = x 2 + 2 y 2 + 2 x y − 2 x − 6 y + 2015
Cho các số x khác 2y thỏa mãn x2- 2xy - 2y2 - 3x +6y=0
Tính giá trị biểu thức A= x2+ 2xy _y2 - 2x- 2y
cho x2+2xy+2y2-2x+6y+13=0 tinh N=3x^2y-1/4xy
tim x y z biết
a,4x^2+9y^2+4x-24y+17=0
b,2x^2+2y^2+z^2+2xy-2xz-6y+9=0
c,x^2+2y+2xy+2x+6y+5=0
tìm x, y biết a) 3y2+x2+2xy+2x+6y=0
b) 10y2+20y2+24xy+8x-24y+51<0 ( với x, y thuộc Z)
tìm x,y,z biết:2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0
Tìm x; y; z biết:
\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
tìm x,y biết:
1) 5x2 + 3y2 + z2 - 4z + 6xy + 4z + 6 = 0
2) 2x2 + 2y2 + z2 + 2xy + 2xz + 2x + 4y + 5 = 0
3) 2x2 + 2y2 + z2 + 2xy +2xz + 2yz + 10x + 6y + 34 = 0