Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Ngọc Gia Hân

tìm x y thuộc z biết x2 - 2xy + 2y2 +2x-6y+4=0

l҉o҉n҉g҉ d҉z҉
31 tháng 8 2020 lúc 9:58

x2 - 2xy + 2y2 + 2x - 6y + 4 = 0

<=> [ ( x2 - 2xy + y2 ) + 2( x - y ) + 1 ] + ( y2 - 4y + 4 ) - 1 = 0

<=> [ ( x - y )2 + 2( x - y ) + 1 ] + ( y - 2 )2 - 1 = 0

<=> ( x - y + 1 )2 + ( y - 2 )2 - 1 = 0

<=> ( x - y + 1 )2 + ( y - 2 )2 = 1

Nhận thấy rằng VT là tổng của hai bình phương 

=> VP cũng phải là tổng của hai bình phương

Ta có : 1 = 12 + 02

               = (-1)2 + 02

Ta xét 4 trường hợp sau :

1.\(\hept{\begin{cases}\left(x-y+1\right)^2=1^2\\\left(y-2\right)^2=0^2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

2. \(\hept{\begin{cases}\left(x-y+1\right)^2=\left(-1\right)^2\\\left(y-2\right)^2=0^2\end{cases}}\Rightarrow x=y=2\)

3. \(\hept{\begin{cases}\left(x-y+1\right)^2=0^2\\\left(y-2\right)^2=1^2\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)

4. \(\hept{\begin{cases}\left(x-y+1\right)^2=0^2\\\left(y-2\right)^2=\left(-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Vậy ( x ; y ) = { ( 0 ; 2 ) , ( 2 ; 2 ) , ( 2 ; 3 ) , ( 0 ; 1 ) }

Khách vãng lai đã xóa
Khánh Ngọc
31 tháng 8 2020 lúc 9:58

\(x^2-2xy+y^2+2x-6y+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2-2y+2x+1\right)+\left(y^2-4y+4\right)=1\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=1\)

Mà \(x;y\in Z\)\(\left(x-y+1\right)^2\ge0;\left(y-2\right)^2\ge0\)

pt <=> \(\orbr{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-2\right)^2=1\end{cases}}\) hoặc \(\orbr{\begin{cases}\left(x-y+1\right)^2=1\\\left(y-2\right)^2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x-y=-1\\y=3\end{cases}}\) hoặc \(\orbr{\begin{cases}x-y=0\\y=2\end{cases}}\)

<=> x = 2 ; y = 3 hoặc x = y = 2 ( tm x ; y thuộc Z )

Vậy các cặp số x ; y thỏa mãn pt trên là : ( 2 ; 3 ) ; ( 2 ; 2 ) 

Khách vãng lai đã xóa
Khánh Ngọc
31 tháng 8 2020 lúc 10:03

Thiếu v:

pt <=> \(\orbr{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-2\right)^2=1\end{cases}}\) hoặc \(\orbr{\begin{cases}\left(x-y+1\right)^2=1\\\left(y-2\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-y=-1\\y=3;y=1\end{cases}}\)hoặc \(\orbr{\begin{cases}x-y=0;x-y=-2\\y=2\end{cases}}\)

<=> x = 2 ; y = 3 hoặc x = 0 ; y = 1 hoặc x = y = 2 hoặc x = 0 ; y = 2

Khách vãng lai đã xóa

Các câu hỏi tương tự
Ryan Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Andrea
Xem chi tiết
nguyen thanh luan
Xem chi tiết
Khỏi Cần Hỏi
Xem chi tiết
Hoàng Văn Anh
Xem chi tiết
Le Thanh Tung
Xem chi tiết
Nàng tiên cá
Xem chi tiết
Văn Thị Kim Chi
Xem chi tiết