2x^2=(x+y)(2-xy)
2x^2=(x+y)(x^2+y^2-xy)
2x^2=x^3+y^3
2=x^2+y^2
suy ra (x^3+y^3)-(x^2+y^2)=2x^2-2
x^3+y^3-x^2-y^2=2(x^2-1)
x^2(x-1)+y^2(y-1)=2(x-1)(x+1)
x^2(x-1)+y^2(y-1)=(x-1)(2x+2)
x^2(x-1)-(x-1)(2x+2)+y^2(y-1)=0
(x-1)(x^2-2x-2)+y^2(y-1)=0
Xét TH1 1<=x<=căn bậc 2
từ x^2+y^2=2 suy ra 0<=y<=1
y<=1 suy ra y-1<=0 => y^2(y-1)<=0 (1)
x>=1 => x-1>=0
1<=x<= căn bậc 2 => -3<=x^2-2x-2<=-2 căn bậc 2
=> (x-1)(x^2-2x-2)<=0 (2)
từ (1) và (2) =>(x-1)(x^2-2x-2)+y^2(y-1)=0 khi và chỉ khi x=y=1
Xét TH2 1<=y<= căn bậc 2
từ x^2+y^2=2 suy ra 0<=x<=1
y>=1 =>y-1>=0 =>y^2(y-1)>=0(3)
x<=1 => x-1<=0
0<=x<=1 => -2<=x^2-2x-2<=-3
suy ra (x-1)(x^2-2x-2)>=0(4)
từ (3) và (4) => (x-1)(x^2-2x-2)+y^2(y-1)=0 khi và chỉ khi x=y=1
vậy cặp số (x,y) duy nhất thỏa mãn đề bài là (1,1)
\(\hept{\begin{cases}x^2+y^2=2\\2x^2=\left(x+y\right)\left(2-xy\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=2\\2x^2=\left(x+y\right)\left(x^2+y^2-xy\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\sqrt{2-x^2}\\2x^2=x^3+y^3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\sqrt{2-x^2}\left(1\right)\\2x^2-x^3=\sqrt{\left(2-x^3\right)}\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(2x^2-x^3\right)^2=\left(2-x^2\right)^3\)
\(\Leftrightarrow2x^6-4x^5-2x^4+12x^2-8=0\)
\(\Leftrightarrow2\left(x-1\right)\left(x^5-x^4-2x^3-2x^2+4x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^5-x^4-2x^3-2x^2+4x+4=0\end{cases}}\)
Làm tiếp nhé
#alibaba_nguyễn
Cho tớ hỏi cái chỗ (2) \(\Leftrightarrow\)(2x2 - x3)2 = (2 - x2)3
Tại sao lại suy ra được như thế vậy ạ?