Ta có: \(x^3-4x^2+x=0\)
\(\Leftrightarrow x\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-4x+4=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{matrix}\right.\)
Ta có: x3−4x2+x=0x3−4x2+x=0
⇔x(x2−4x+1)=0⇔x(x2−4x+1)=0
⇔[x=0x2−4x+4=3⇔⎡⎢⎣x=0x=√3+2x=−√3+2⇔[x=0x2−4x+4=3⇔[x=0x=3+2x=−3+2