\(x^2-4=2\left(x^2+4x+4\right)\)
⇔\(x^2-4=2x^2+8x+8\)
⇔\(x^2-4-2x^2-8x-8=0\)
⇔\(-x^2-12-8x=0\)
⇔\(\left(x+2\right)\left(x+6\right)=0\)
⇔\(\left[{}\begin{matrix}x+2=0\\x+6=0\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=0-2=-2\\x=0-6=-6\end{matrix}\right.\)
Vậy \(x\) ∈ \(\left\{-2;-6\right\}\)
\(\#PeaGea\)