\((x+1) + (x+3) + ... + (x+99) = 3000 \Rightarrow x+1+x+3+...+x+99=3000\)
\(\Rightarrow 50x+(1+3+5+...+99)=3000\)
\(\Rightarrow 50x+2500=3000\)
\(\Rightarrow 50x = 500 \Rightarrow x = 10\)
\(\left(x+1\right)+\left(x+3\right)+...+\left(x+99\right)=3000\)
\(\Rightarrow\left(x+x+...+x\right)+\left(1+3+...+99\right)=3000\) \(^{\left(1\right)}\)
Đặt \(A=1+3+...+99\)
Số các số hạng của \(A\) là:
\(\left(99-1\right):2+1=50\left(số\right)\)
Tổng \(A\) bằng:
\(\left(99+1\right)\cdot50:2=2500\)
Thay \(A=2500\) vào \(\left(1\right)\), ta được:
\(50x+2500=3000\)
\(\Rightarrow50x=3000-2500\)
\(\Rightarrow50x=500\)
\(\Rightarrow x=\dfrac{500}{50}=10\)
Vậy \(x=10\)
\(Toru\)