\(x+y+13=2\left(2\sqrt{x}+3\sqrt{y}\right)\)
\(\Leftrightarrow x+y+13-4\sqrt{x}-6\sqrt{y}=0\)
\(\Leftrightarrow x-4\sqrt{x}+4+y-6\sqrt{y}+9=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
Xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x}=2\\\sqrt{y}=3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=9\end{matrix}\right.\)
Điều kiện xác định: \(x,y>0\)
\(x+y+13=2\left(2\sqrt{x}+3\sqrt{y}\right)\)
\(\Leftrightarrow x-4\sqrt{x}+4+y-6\sqrt{y}+9=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y}-3\right)^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x}-2\right)^2=0\\\left(\sqrt{y}-3\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2=0}{\sqrt{y}-3=0}\)
\(\Leftrightarrow\dfrac{x=4}{y=9}\)
KL: x = 4, y = 9
Viết mở bài của câu chuyện về cuộc giao chiến của Sơn Tinh và Thuỷ Tinh
Cx khá dễ:
\(x+y+13=2\left(2\sqrt{x}+3\sqrt{y}\right)\)
\(\Rightarrow x+y+13=4\sqrt{x}+6\sqrt{y}\)
\(\Rightarrow x+y+13-4\sqrt{x}-6\sqrt{y}=0\)
\(\Rightarrow x+y+4+9-4\sqrt{x}-6\sqrt{y}=0\)
\(\Rightarrow\left(x-4\sqrt{x}+4\right)+\left(y-6\sqrt{y}+9\right)=0\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
\(\left\{{}\begin{matrix}\left(\sqrt{x}-2\right)^2\ge0\\\left(\sqrt{y}-3\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y}-3\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\sqrt{x}=2\Rightarrow x=4\\\sqrt{y}=3\Rightarrow y=9\end{matrix}\right.\)
\(\Leftrightarrow\)x+y+13-2(2\(\sqrt{x}\)+3\(\sqrt{y}\))=0
\(\Leftrightarrow\)x+y+13-4\(\sqrt{x}\)-6\(\sqrt{y}\)=0
\(\Leftrightarrow\)x+y+4+9-4\(\sqrt{x}\)-6\(\sqrt{y}\)=0
\(\Leftrightarrow\)(\(\sqrt{x}\)-2)2+(\(\sqrt{y}\)-3)2
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x}-2\right)^2=0\\\left(\sqrt{y}-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{y}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\\sqrt{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=9\end{matrix}\right.\)