1: Đặt \(B=\sqrt{x+\sqrt{x^2-y^2}}-\sqrt{x-\sqrt{x^2-y^2}}\)
\(\Leftrightarrow B^2=x+\sqrt{x^2-y^2}+x-\sqrt{x^2-y^2}-2\cdot\sqrt{x^2-x^2+y^2}\)
\(\Leftrightarrow B^2=2x-2y\)
\(\Leftrightarrow B=\sqrt{2\left(x-y\right)}\)
\(\Leftrightarrow A\sqrt{\dfrac{x-y}{2}\cdot2\left(x-y\right)}=x-y\)