\(\frac{x-1}{x-2}=\frac{x+3}{x+4}\)
\(\Rightarrow\left(x-1\right)\left(x+4\right)=\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow x^2+4x-x-4=x^2+3x-2x-6\)
\(\Leftrightarrow x^2+4x-x-4-x^2-3x+2x+6=0\)
\(\Leftrightarrow2x+2=0\)
\(\Leftrightarrow2x=-2\)
\(\Leftrightarrow x=-1\)VẬY X=-1 LÀ NGHIỆM CỦA PHƯƠNG TRÌNH \(\frac{x-1}{x-2}=\frac{x+3}{x+4}\)
Ta có : \(\frac{x-1}{x-2}=\frac{x+3}{x+4}\)
\(\Rightarrow\left(x-1\right)\left(x+4\right)=\left(x-2\right)\left(x+3\right)\)
\(\Rightarrow x^2+4x-x-4=x^2+3x-2x-6\)
\(\Rightarrow3x-4=x+6\)
\(\Rightarrow3x-x=-4+6\)
\(\Rightarrow2x=-2\)
\(\Rightarrow x=-1\)