Ta có\(\left|x+1\right|-\left|x-3\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)-\left(x-3\right)=0\\\left(x+1\right)+\left(x-3\right)=0\end{cases}}\)
Nếu \(\left(x+1\right)-\left(x-3\right)=0\)
\(\Rightarrow x+1=x-3\)\(\Rightarrow x=x-4\)
\(\Rightarrow x\)không tồn tại.
Nếu \(\left(x+1\right)+\left(x-3\right)=0\)
\(\Rightarrow x+1=-\left(x-3\right)=3-x\)
\(\Rightarrow2\left(x+1\right)=\left(x+1\right)+\left(x+1\right)=\left(x+1\right)+\left(3-x\right)=x+1+3-x=4\)
\(\Rightarrow x+1=\frac{4}{2}=2\)
\(\Rightarrow x=2-1=1\)
Vậy \(x=2\)
lx+1l - lx-3l=0
x=2;x=6
Thay số:l2+1l - l6 - 3l=0
Vậy x=2;x=3