\(A=\dfrac{x+3}{x-2}=\dfrac{x-2+5}{x-2}=1+\dfrac{5}{x-2}\)
\(A\in Z\Rightarrow\dfrac{5}{x-2}\in Z\)
\(\Rightarrow x-2=Ư\left(5\right)\)
\(\Rightarrow x-2=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x=\left\{-3;1;3;7\right\}\)
A=\(\dfrac{x+3}{x-2}\) có giá trị nguyên khi (x+3)⋮(x-2) Mà (x-2)⋮(x-2) ⇒(x+3)-(x-2)⋮(x-2) ⇒x+3-x+2 ⋮(x-2) ⇒5 ⋮(x-2) ⇒x-2 ∈ Ư(5)={-5;-1;1;5}
x-2 | -1 | 1 | 5 | -5 |
x | 1 | 3 | 7 | -3 |
Vậy x ∈ {1;3;7;-3}