a) \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{3}{4}\right)\le x\le\dfrac{1}{24}-\left(\dfrac{1}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{3}{4}\le x\le\dfrac{1}{24}-\dfrac{1}{8}+\dfrac{1}{3}\)
\(\dfrac{6}{12}-\dfrac{4}{12}-\dfrac{9}{12}\le x\le\dfrac{1}{24}-\dfrac{3}{24}+\dfrac{8}{24}\)
\(-\dfrac{7}{12}\le x\le\dfrac{6}{24}\)
\(-\dfrac{7}{12}\le x\le\dfrac{1}{4}\)
Giá trị x nguyên thỏa mãn là: 0
b) \(-\dfrac{1}{2}-\dfrac{3}{4}+\dfrac{1}{3}\le x\le\dfrac{5}{6}-\left(-\dfrac{3}{4}\right)+\dfrac{7}{12}\)
\(\dfrac{-6}{12}-\dfrac{9}{12}+\dfrac{4}{12}\le x\le\dfrac{5}{6}+\dfrac{3}{4}+\dfrac{7}{12}\)
\(-\dfrac{11}{12}\le x\le\dfrac{10}{12}+\dfrac{9}{12}+\dfrac{7}{12}\)
\(-\dfrac{11}{12}\le x\le\dfrac{26}{12}\)
\(-\dfrac{11}{12}\le x\le\dfrac{13}{6}\)
Các giá trị x nguyên thỏa mãn là: 0; 1; 2
a) Ta có :
\(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{3}{4}\right)\le x\le\dfrac{1}{24}-\left(\dfrac{1}{8}-\dfrac{1}{3}\right)\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{13}{12}\le x\le\dfrac{1}{24}-\dfrac{-5}{24}\)
\(\Leftrightarrow\dfrac{-7}{12}\le x\le\dfrac{1}{4}\)
mà \(x\in Z\)
\(\Rightarrow x=0\)
Vậy \(x=0\)
b) Ta có :
\(\dfrac{-1}{2}-\dfrac{3}{4}+\dfrac{1}{3}\le x\le\dfrac{5}{6}-\left(\dfrac{-3}{4}\right)+\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{-6}{12}-\dfrac{9}{12}+\dfrac{4}{12}\le x\le\dfrac{5}{6}+\dfrac{3}{4}+\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{-11}{12}\le x\le\dfrac{10}{12}+\dfrac{9}{12}+\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{-11}{12}\le x\le\dfrac{26}{12}\)
\(\Leftrightarrow\dfrac{-11}{12}\le x\le\dfrac{13}{6}\)
mà \(x\in Z\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)
Vậy \(x\in\left\{0;1;2\right\}\)