\(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
\(\Rightarrow4⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)\)
\(\Rightarrow\sqrt{x}-3\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;4;1;5;-1;7\right\}\)
=> x thuộc {4;16;1;25;1;49}
\(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)+4⋮\sqrt{x}-3\)
\(\Rightarrow4⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\in\)Ư(4)={-1,-2,-4,1,2,4}
<=> \(x\in\left\{4,1,16,25,49\right\}\)
\(\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}-3\right)\)
=> \(\left(\sqrt{x}+1\right)-\left(\sqrt{x}-3\right)⋮\left(\sqrt{x}-3\right)\)
=>\(\sqrt{x}+1-\sqrt{x}+3⋮\sqrt{x}-3\)
=> \(4⋮\sqrt{x}-3\)
=> \(\sqrt{x}-3\inƯ\left(4\right)\)={ 1;-1;2;-2;4;-4}
Ta có bảng sau :
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
x | 16 | 4 | 25 | 1 | 49 | 1 |
\(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
=> \(4⋮\left(\sqrt{x}-3\right)\)=> \(\sqrt{x}-3\inƯ\left(4\right)\)
=> \(\sqrt{x}-3\in\left\{1;-1;4;-4\right\}\)
=> \(\sqrt{x}\in\left\{4;2;7;-1\right\}\)
=>\(x\in\left\{16;4;49;\varnothing\right\}\)
Sơ sót chỗ này
\(\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=> \(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
=> \(x\in\left\{16;4;25;1;49;\varnothing\right\}\)