P>1/4
=>\(P-\dfrac{1}{4}>0\)
=>\(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{4}>0\)
=>\(\dfrac{4-\sqrt{x}-2}{4\left(\sqrt{x}+2\right)}>0\)
=>\(2-\sqrt{x}>0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
Kết hợp ĐKXĐ, ta được: 0<x<4
mà x nguyên
nên \(x\in\left\{1;2;3\right\}\)
P>1/4
=>\(P-\dfrac{1}{4}>0\)
=>\(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{4}>0\)
=>\(\dfrac{4-\sqrt{x}-2}{4\left(\sqrt{x}+2\right)}>0\)
=>\(2-\sqrt{x}>0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
Kết hợp ĐKXĐ, ta được: 0<x<4
mà x nguyên
nên \(x\in\left\{1;2;3\right\}\)
\(B=\dfrac{2-x}{2\sqrt{x+x}}-\dfrac{1}{\sqrt{x}}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}\left(x>0;x\ne4\right)\)
a. Tìm số tự nhiên x để B đạt min
b. Tìm x để \(\sqrt{B}>\dfrac{1}{2}\)
Bài 3: Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\) với \(x\ge0\) và \(x\ne4\)
a) Rút gọn A
b) Tìm giá trị của x để A > 0
cho Q= \(\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3\sqrt{x}}vớix\ge0,x\ne4,x\ne9\)
a) rút gọn Q
b) tìm x để Q=2
c)tìm x để Q có gí trị nguyên
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x>0;\(x\ne1;x\ne4\)
a, rút gọn
b, với giá trị nào của x thì P có giá trị =\(\dfrac{1}{4}\)
c, tìm giá trị của Ptại \(x=4+2\sqrt{3}\)
Tìm số nguyên tố `x` để |P| + P = 0 biết \(P=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\) \(\left(x\ge0;x\ne4;x\ne9\right)\)
Cho biểu thức:
\(P=\left(1+\dfrac{4}{\sqrt{x}-1}+\dfrac{1}{x-1}\right):\left(\dfrac{x+2\sqrt{x}}{x-1}\right)\) Với \(x>0;x\ne1\)
a, Rút gọn biểu thức.
b, Tìm \(x\in Z\) để P nhận giá trị nguyên.
p= \(\left(\dfrac{x+2\sqrt{x}}{x-4}-\dfrac{2\sqrt{x}+1}{2x-3\sqrt{x}-2}-\dfrac{x}{\sqrt{x}-2}\right)\dfrac{x-1}{x\sqrt{x}+1}vớix\ge0;x\ne4\)
Rút gọn biểu thức \(P=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\div\dfrac{2}{x-2\sqrt{x}}\) , với \(x>0,x\ne4\)
Ai giúp minh với ạ
Rút gọn các biểu thức sau:
\(C=\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-2}\)
(với \(x\ge0,x\ne4,x\ne9\))
\(D=\left(\dfrac{\sqrt{x}+2}{x-9}-\dfrac{\sqrt{x}-2}{x+6\sqrt{x}+9}\right).\dfrac{x\sqrt{x}+3x-9\sqrt{x}-27}{\sqrt{x}-2}\)
(với \(x\ge0,x\ne4,x\ne9\))