Ta có:\(\dfrac{x+3}{1-x}=\dfrac{-\left(1-x\right)+4}{1-x}=-1+\dfrac{4}{1-x}\)
Để \(\dfrac{4}{1-x}\) nguyên thì 1-x∈Ư(4)={1;-1;2;-2;4;-4}
⇔ x={0;2;-1;3;-3;5}
Để \(\dfrac{x+3}{1-x}\) là số nguyên thì \(x+3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{2;0;3;-1;5;-3\right\}\)