ĐKXĐ: \(-x^2+4x-10>=0\)
\(\Leftrightarrow x^2-4x+10< =0\)
\(\Leftrightarrow\left(x-2\right)^2+6< =0\)(vô lý)
ĐKXĐ: \(-x^2+4x-10>=0\)
\(\Leftrightarrow x^2-4x+10< =0\)
\(\Leftrightarrow\left(x-2\right)^2+6< =0\)(vô lý)
Bài 1: Tìm x để biểu thức có nghĩa
a) \(\dfrac{-5}{\sqrt{10x+2}}\) d)\(\sqrt{\dfrac{3-12x}{-4}}\)
b) \(\sqrt{\dfrac{-5}{10x+2}}\) e)\(\sqrt{x^2+1}\)
c)\(\sqrt{\dfrac{8-4x}{10}}\) f) \(^{\dfrac{10}{\sqrt{2020-2021}}}\)
g) \(\sqrt{\dfrac{2x-8}{x^2+1}}\)
Giúp mk vs, sắp pk nộp r :<<
Thanks ạ
Cho \(P =( { \sqrt{x} +2 \over \sqrt{x} -2} -{ \sqrt{x} -2 \over \sqrt{x} +2} -{{4x} \over {4-x}}) : { x- 3\sqrt{x} \over 10\sqrt{x} -5x}\)
a) Tìm x để P có nghĩa
b) Rút gọn P
c) Tìm các giá trị của x để P > 0
d) Tìm các giá trị nguyên của a để P ⋮ 20
p/s: em đang cần giải gấp câu d mọi người giúp em trình bày với ạ
Bài 1 : Cho biểu thức R = \(\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\cdot\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ Rút gọn R
b/ Tìm các giá trị của x để R < -1
Bài 2 : Cho \(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}=2\)Tính giá trị biểu thức M =\(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\)
Bài 3 : Tìm GTNN của : Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
Tìm điều kiện để các biểu thức sau có nghĩa
a, \(\sqrt{x-2}-\sqrt{4-x}\)
b, \(\dfrac{1}{\sqrt{x+1}-1}\)
c, \(\sqrt{x^2-4x+3}\)
d, \(\sqrt{-x^5}\)
e, \(\sqrt{\dfrac{x-3}{2-x}}\)
g, \(\sqrt{-\left|x-2\right|}\)
h, \(\sqrt{4x^2-4x+1}\)
Mình đang cần gấp, sắp phải nộp rồi
Bài 3: Tìm x biết:
a) \(\sqrt{3x-2}=4\)
b) \(\sqrt{4x^2+4x+1}-11=5\)
Bài 4: Cho biểu thức
C= \(1\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\) (x > 0, x ≠ 1)
a) Rút gọn C
b) Tìm x để C - 6 < 0
Helpp!!!
Bài 1 : Cho \(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}=2\) Tính giá trị biểu thức M = \(\sqrt{x^2-5x+10}+\sqrt{x^2-5x+10}\)
Bài 2 : Tìm GTNN của : Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
tìm GTNN của biểu thức
\(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\)
tìm GTNN của biểu thức
\(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\)
A = (\(\dfrac{\left(\sqrt{x}\right)}{\sqrt{x}-2}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)) : \(\dfrac{\sqrt{4x}}{x-4}\)
a) Tìm điều kiện xác định
b) Rút gọn A
c) Tìm x để A < 3
Tìm x để B=\(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2}-4x+4}\) có nghĩa