Bài 1 :
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Vậy \(MIN_A=-36\) . Dấu \("="\) xảy ra khi \(x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Bài 2 :
a ) \(x+y=5\Rightarrow\left(x+y\right)^2=25\)
\(\Leftrightarrow x^2+2xy+y^2=25\)
\(\Leftrightarrow x^2+y^2=25-2.6=13\)
\(B=x^2-4x+1\)
\(B=x^2-4x+4-3\)
\(B=\left(x-2\right)^2-3\ge-3\)
"="<=>x=2
\(C=\dfrac{-4}{x^2-4x+10}\)
Ta có:\(x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
\(\Rightarrow\dfrac{-4}{x^2-4x+10}\ge-\dfrac{4}{6}=-\dfrac{2}{3}\)
"="<=>x=2
D\(\ge-\dfrac{8}{3}\)<=>x=0,5(tương tự)
A đạt GTNN khi A âm nên có lẻ trong 4 số là âm
B đạt GTNN khi x - 2 = 0
2)\(B=x^3+y^3\)
\(B=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(B=5\left(13-6\right)=35\)
\(C=x^2-y^2\)
Ta có:\(\left(x-y\right)^2=x^2-2xy+y^2=13-12=1\)
\(\Rightarrow x-y=\pm1\)
\(\Rightarrow\)\(C=\left(x-y\right)\left(x+y\right)=\pm5\)
\(D=\dfrac{y}{x}+\dfrac{x}{y}\)
\(D=\dfrac{x^2+y^2}{xy}\)
\(D=\dfrac{13}{6}\)