Cho biểu thức:\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
1. Với giá trị nào của x thì biểu thức A xác định?
2.Tìm giá trị của x để A đạt giá trị nhỏ nhất.
3.Tìm các giá trị nguyên của x để A có giá trị nguyên.
1. \(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{3}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{3}+3}{3-\sqrt{3}}\)
a) Rút gọn P
b) Tính giá trị nhỏ nhất của P
c) Tính giá trị của P với \(x=14-6\sqrt{5}\)
2. Tìm giá trị nhỏ nhất của biểu thức \(P=x^2-x\sqrt{3}+1\)
3. Tìm số dương x để biểu thức \(Y=\frac{x}{\left(x+2011\right)^2}\)đạt giá trị lớn nhất
4. Cho \(Q=\frac{1}{x-\sqrt{x}+2}\)xác định x để Q đạt giá trị lớn nhất
Cho biểu thức M=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn biểu thức M
b) Tìm giá trị của x để biểu thức M đạt giá trị nhỏ nhất
Cho biểu thức C=\(\frac{x\sqrt{x}}{x-2\sqrt{x}-3}+\frac{\sqrt{x}+3}{3-\sqrt{x}}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)với \(x\ge0,x\ne9.\)
a/Rút gọn biểu thức C
b/Tìm x để biểu thức C đạt giá trị nhỏ nhất.
cho biểu thức P=\(\left(\frac{x+2}{\sqrt{x}+1}-\sqrt{x}\right):\left(\frac{\sqrt{x}-4}{1-x}-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
tìm x để P đạt giá trị nhỏ nhất.
Cho biểu thức: Q = \(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)với \(x\ge0,x\ne\frac{1}{4}v\text{à}x\ge1\)
1) Rút gon Q
2) Với giá trị nào của x thì biểu thức Q đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Giúp mik vs
Cho biểu thức P=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
a) Tìm điều kiện để P xác định và rút gọn P.
b) Tìm các giá trị nguyên của x để P đạt giá trị nguyên.
c)Tìm giá trị của x để P đạt GTNN, tìm giá trị nhỏ nhất đó.
Cho \(A=\sqrt{x}+\dfrac{2}{\sqrt{x}}\) Tìm tất cả giá trị của x để biểu thức A đạt giá trị nhỏ nhất
Bài 1: Cho P= \(\frac{x+3}{\sqrt{x}-2}\)và Q= \(\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{5\sqrt{x}-2}{x-4}\)với \(x>0;x\ne4\)
a) Rút gọn Q
b) Tìm x để biểu thức \(\frac{P}{Q}\)đạt giá trị nhỏ nhất