\(x^3-x^2=4x^2-8x+4\\ \Rightarrow x^3-5x^2+8x-4=0\\ \Rightarrow\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)=0\\ \Rightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\\ \Rightarrow\left(x^2-4x+4\right)\left(x-1\right)=0\\ \Rightarrow\left(x-2\right)^2\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Ta có: x3 – x2= x2(x -1); 4x2 – 8x + 4 = 4(x2 – 2x + 1) = 4(x – 1)2
Vậy x2 (x -1) = 4(x – 1)2 ⇒ x2(x -1) - 4(x – 1)2 = 0
⇒ (x – 1)(x2 – 4x + 4) = 0 ⇒ (x – 1)(x – 2)2 = 0
⇒ x – 1 = 0 hoặc x – 2 = 0 ⇒ x = 1 hoặc x = 2.