\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
=> \(2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)
=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2019}{2020}\)
=> \(1-\frac{2}{x+1}=\frac{2019}{2020}\)
=> \(\frac{2}{x+1}=\frac{1}{2020}=\frac{2}{4040}\)
=> x + 1 = 4040 => x = 4039