a) Ta có: \(\sqrt{x^2+6x+9}=3x-1\)
\(\Rightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Rightarrow\)\(x+3=3x-1\)
\(\Rightarrow x-3x=-1-3\Rightarrow-2x=-4\Rightarrow x=2\).
b) \(\sqrt{x^4}=7\)
\(\Rightarrow x^2=7\)
\(\Rightarrow x=-7\)hoặc \(x=7\).
c) Ta có: \(x^2+2\sqrt{13}x=-13\)
\(\Rightarrow x^2+2\sqrt{13}x+13=0\)
\(\Rightarrow\left(x+\sqrt{13}\right)^2=0\Rightarrow x+\sqrt{13}=-\sqrt{13}\).
Chúc bn hc tốt!
a) \(\sqrt{x^2+6x+9}=3x-1\)
Ta thấy vế trái là căn bậc hai nên là số không âm => vế phải cũng phải là số không âm
=> \(3x-1\ge0\Rightarrow x\ge\frac{1}{3}\)
Khi đó phương trình tương đương với:
\(\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow\left|\left(x+3\right)\right|=3x-1\)
Do \(x\ge\frac{1}{3}\) nên \(x+3>0\), phương trình trên trở thành:
\(x+3=3x-1\)
\(\Leftrightarrow x=2\)
Đối chiếu với điều kiện \(x\ge\frac{1}{3}\) thì x =2 thỏa mãn
b) \(\sqrt{x^4}=7\)
\(\Leftrightarrow x^2=7\)
\(\Leftrightarrow x=\pm\sqrt{7}\)
c) \(x^2+2\sqrt{13}x+13=0\)
\(\Leftrightarrow x^2+2\sqrt{13}x+\sqrt{13}^2=0\)
\(\Leftrightarrow\left(x+\sqrt{13}\right)^2=0\)
\(\Leftrightarrow x=-\sqrt{13}\)