`|2x+1|-3=x+4`
`<=>|2x+1|=x+4+3=x+7(x>=-7)`
`**2x+1=x+7`
`<=>x=7-1=6(tm)`
`**2x+1=-x-7`
`<=>3x=-6`
`<=>x=-2(tm)`
`|3x-5|=1-3x(x<=1/3)`
`**3x-5=1-3x`
`<=>6x=6`
`<=>x=1(l)`
`**3x-5=3x-1`
`<=>-5=-1` vô lý
`|2x+2|+|x-1|=10`
Nếu `x>=1`
`pt<=>2x+2+x-1=10`
`<=>3x+1=10`
`<=>3x=9`
`<=>x=3(tm)`
Nếu `x<=-1`
`pt<=>-2x-2+1-x=10`
`<=>-1-3x=10`
`<=>-11=3x`
`<=>x=-11/3(tm)`
Nếu `-1<=x<=1`
`pt<=>2x+2+1-x=10`
`<=>x+3=10`
`<=>x=7(l)`
Vậy `S={3,-11/3}`
d)
+) Với \(x< -4\), PT \(\Rightarrow3-x-x-4-2x-6=10\) \(\Leftrightarrow x=-\dfrac{17}{4}\) (Nhận)
+) Với \(-4\le x\le-3\), PT \(\Rightarrow3-x+x+4-2x-6=10\) \(\Leftrightarrow x=-\dfrac{9}{2}\) (Loại)
+) Với \(-3< x\le3\), PT \(\Rightarrow3-x+x+4+2x+6=10\) \(\Leftrightarrow x=-\dfrac{3}{2}\) (Nhận)
+) Với \(x>3\), PT \(\Rightarrow x+3+x+4+2x+6=10\) \(\Leftrightarrow x=-\dfrac{3}{4}\) (Loại)
Vậy \(x\in\left\{-\dfrac{3}{2};-\dfrac{17}{4}\right\}\)