\(\Leftrightarrow2\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(\Leftrightarrow\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2010}{4024}=\dfrac{1005}{2012}\)
=>1/x+1=-251/1006
=>x+1=-1006/251
=>x=-1257/251