\(\sqrt{x}=\dfrac{7}{3}\left(dk:x\ge0\right)\)
\(\Rightarrow x=\dfrac{49}{9}\left(tm\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\sqrt{x}=\dfrac{7}{3}\left(dk:x\ge0\right)\)
\(\Rightarrow x=\dfrac{49}{9}\left(tm\right)\)
1. Tìm x:
a/\(\sqrt{\dfrac{x-1}{x-3}=2}\)
b/\(\sqrt{\left(x-2\right)^2=7}\)
2. Tính:
\(\dfrac{\sqrt{6}+\sqrt{10}}{3+\sqrt{15}}\)
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Tìm \(x\)
a) \(\dfrac{2-x}{4}=\dfrac{3x-1}{3}\)
b) \(\dfrac{x}{7}=\dfrac{x+16}{35}\)
c) \(\sqrt{x^2+1}=3\)
tìm số nguyên x biết: \(\dfrac{\sqrt{49}}{6}< \left|x-\dfrac{2}{3}\right|< -\dfrac{26}{\sqrt{81}}\)
Tìm x, biết:
\(\dfrac{1}{2}x+\dfrac{4}{5}=2x-\dfrac{8}{5}\)
\(\sqrt{x}=5\) (x ≥ 0)
x2 = 3
Tìm x, biết:
a) \(\dfrac{-3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)
b) \(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)
1, Tìm x ∈ Z biết
a, \(\dfrac{x-4}{15}\)=\(\dfrac{5}{3}\)
b, \(\dfrac{x}{4}\)=\(\dfrac{18}{x+1}\)
c,2x+3 ⋮ x+4
\sqrt{1} \(\dfrac{help}{me}\)
Câu 1: Thực hiện phép tính
a, \(40\dfrac{1}{4}:\dfrac{5}{7}-25\dfrac{1}{4}:\dfrac{5}{7}-\dfrac{1}{2021}\)
b, \(\left|\dfrac{-5}{9}\right|.\sqrt{81}-2021^0.\dfrac{16}{25}\)
Câu 2: Tìm x
\(3\left(x-\dfrac{1}{3}\right)-7\left(x+\dfrac{3}{7}\right)=-2x+\dfrac{1}{3}\)
Tìm x, biết:
a) \(\dfrac{3}{7}\)x - \(\dfrac{2}{3}\)x = \(\dfrac{10}{21}\)
b) \(\dfrac{7}{35}\) : (x - \(\dfrac{1}{3}\)) = \(-\dfrac{2}{25}\)
c) 3.(x - \(\dfrac{1}{2}\)) - 5. (x + \(\dfrac{3}{5}\)) = -x + \(\dfrac{1}{5}\)