=> \(x-\frac{1}{2}\ge0\Rightarrow x\ge\frac{1}{2}\left(1\right)\)
hoặc \(x+\frac{1}{2}\ge0\Rightarrow x\ge-\frac{1}{2}\left(2\right)\)
Từ (1) và (2) => \(x\ge\frac{1}{2}\)
=> \(x-\frac{1}{2}\ge0\Rightarrow x\ge\frac{1}{2}\left(1\right)\)
hoặc \(x+\frac{1}{2}\ge0\Rightarrow x\ge-\frac{1}{2}\left(2\right)\)
Từ (1) và (2) => \(x\ge\frac{1}{2}\)
tìm x biết
a)\(\frac{3.\left(x-1\right)}{2}=\frac{8}{27\left(x-1\right)}\)
b)\(x-3\sqrt{x}=0\) với \(x\ge0\)
Tìm x biết: \(\left|x.\left(x^2-\frac{5}{4}\right)\right|\ge0\)
Tìm x biết: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x+\frac{1}{20}\right|+...+\left|x+\frac{1}{110}\right|=11x\) = 11x
Tìm x, biết:
a) \(\left(x-3\right)\left(x+2\right)>0\)
b) \(\left(x+5\right)\left(x+1\right)< 0\)
c) \(\frac{\left(x-4\right)}{x+6}\le0\)
d) \(\frac{\left(x-6\right)}{x-7}\ge0\)
1. Tìm x ϵ Q sao cho:
a) (2x-3). (x+1) < 0.
b) \(\left(x-\frac{1}{2}\right).\left(x+3\right)>0\)
2.Tính:
S=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{999.1001}\)
3.Tìm x: Biết x không thuộc{-2; -5; -10; -17}
\(\frac{3}{\left(x+2\right).\left(x+5\right)}+\frac{5}{\left(x+5\right).\left(x+10\right)}+\frac{7}{\left(x+10\right).\left(x+17\right)}=\frac{x}{\left(x+2\right).\left(x+17\right)}\)
tìm x,biết:
a)\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
b)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
c)\(\left(x+2\right)^2=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-...+\frac{197}{4851}-\frac{199}{4950}\)
giúp tớ với,huhu
Tìm x biết: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...+\left|x+\frac{1}{110}\right|\)
Bài 1 : Tìm x biết :
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
b, \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
c,\(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
Bài 2 : Tìm x biết :
a, | 2x - 5 | = x +1
b, | 3x - 2 | -1 = x
c, | 3x - 7 | = 2x + 1
d, | 2x-1 | +1 = x
Tìm x biết:
\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=\frac{3}{4}\)