\(\frac{x-3}{2013}+\frac{x-4}{2012}=\frac{x-5}{2011}+\frac{x-6}{2010}\)
\(\Leftrightarrow\frac{x-3-2013}{2013}+\frac{x-2-2012}{2012}=\frac{x-5-2011}{2011}+\frac{x-6-2010}{2010}\)(mỗi vế trừ đi 2)
\(\Leftrightarrow\frac{x-2016}{2013}+\frac{x-2016}{2012}-\frac{x-2016}{2011}-\frac{x-2016}{2010}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Mà \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)
\(\Rightarrow x-2016=0\Leftrightarrow x=2016\)
Cộng mỗi vế cho 1
Ta có: \(\frac{x-3-2013}{2013}+\frac{x-4-2012}{2012}=\frac{x-5-2011}{2011}+\frac{x-6-2010}{2010}\)
\(=>\left(\frac{x-2016}{2013}+\frac{x-2016}{2012}\right)-\left(\frac{x-2016}{2011}+\frac{x-2016}{2010}\right)=0\)
\(=>\left(x-2016\right).\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)\)
Mà \(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\ne0\)
\(=>x-2016=0\\ =>x=2016\)