\(3^x+3^{x+1}+3^{x+2}=117\)
\(\Leftrightarrow3^x+3^x.3^1+3^x.3^2=117\)
\(\Leftrightarrow3^x\left(1+3+3^2\right)=117\)
\(\Leftrightarrow3^x.13=117\)
\(\Leftrightarrow3^x=9=3^2\)
\(\Leftrightarrow x=2\)
3^x+3^x+1+3 ^x+2=117
=> 3^x .(1+3+3^2 )=117
=> 3^x .(1+3+9)=117
=> 3^x .13=117
=> 3^x=117:13
=> 3^x=9
=> 3^x=3^2
Vậy x=2