3) |x| = 3+2x
Th1: x= 3 +2x
x -2x = 3
-x = 3
x= -3
Th2: x= -(3+2x)
x= -3 -2x
x+2x = -3
3x = -3
x= -1
Vậy x= -3; x=-1
4) | 3-2x| =4/3
Th1: 3-2x = 4/3
2x = 3- 4/3
2x = 5/3
x= 5/3 : 2
x= 5/6
Th2: 3 - 2x = -4/3
2x = 3- (-4/3)
2x = 13/3
x = 13/3 : 2
x = 13/6
Vậy x= 5/6 và x= 13/6
3)Ta có: |x| = 3+2x
<=> x = 3 + 2x
(-x) = 3 + 2x
<=> 3 = 2x - x
3 = 2x - (-x)
<=> x = 3
3x = 3
<=> x = 3
x = 1
\(\left|x\right|=3+2x\Rightarrow\orbr{\begin{cases}x=3+2x\\x=-3-2x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-2x=3\\x+2x=-3\end{cases}\Rightarrow\orbr{\begin{cases}-x=3\\3x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\x=-1\end{cases}}}\)
\(\left|3-2x\right|=\frac{4}{3}\Rightarrow\orbr{\begin{cases}3-2x=\frac{4}{3}\\3-2x=-\frac{4}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=3-\frac{4}{3}\\2x=3-\left(-\frac{4}{3}\right)\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{5}{3}\\2x=\frac{13}{3}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{13}{6}\end{cases}}\)