a: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2021}{2022}\)
=>\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
=>\(1-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
=>\(\dfrac{1}{x+1}=1-\dfrac{2021}{2022}=\dfrac{1}{2022}\)
=>x+1=2022
=>x=2021
b: Sửa đề: \(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)
=>\(\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)+\left(\dfrac{x+4}{96}+1\right)=0\)
=>\(\dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\)
=>\(\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\right)=0\)
=>x+100=0
=>x=-100