a ) \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-4\right)\left(x+4\right)=5\)
\(\Leftrightarrow x^3-27-x\left(x^2-16\right)=5\)
\(\Leftrightarrow x^3-27-x^3+16x=5\)
\(\Leftrightarrow16x-27=5\)
\(\Leftrightarrow16x=32\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
b ) \(\left(x-2\right)^3-\left(x+5\right)\left(x^2-5x+25\right)+6x^2=11\)
\(\Leftrightarrow x^3-6x^2+12x-8-\left(x^3+125\right)+6x^2=11\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3-125+6x^2=11\)
\(\Leftrightarrow12x-133=11\)
\(\Leftrightarrow12x=144\)
\(\Leftrightarrow x=12\)
Vậy \(x=12\)