a, 24-x=32=25
=> 4-x=5
<=> x=-1
b, (x+1,5)2+(y-2,5)10=0
Vì (x+1,5)2\(\ge\)0, (y-2,5)10\(\ge\)0
\(\Rightarrow\hept{\begin{cases}x+1,5=0\\y-2,5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1,5\\y=2,5\end{cases}}}\)
a)\(2^{4-x}\)=32
=>\(2^{4-x}\)=32=\(2^5\)
=>4-x=5
=>x=4-5=-1
=>x=-1
b) Ta có: \(\hept{\begin{cases}\left(x+1,5\right)^2\ge0;\forall x\\\left(y-2,5\right)^{10}\ge0;\forall x\end{cases}}\)
\(\Rightarrow\left(x+1,5\right)^2+\left(y-2,5\right)^{10}\ge0;\forall x\)
Do đó \(\left(x+1,5\right)^2+\left(y-2,5\right)^{10}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1,5\right)^2=0\\\left(y-2,5\right)^{10}=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+1,5=0\\y-2,5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1,5\\y=2,5\end{cases}}}\)
Vậy ...
a) 24 - x = 32
<=> 24 - x = 25
<=> 4 - x = 5
<=> x = -1
=> x = -1
c) \(2^{-2}.2^x+2.2^x=9.2^6\)
\(2^x\left(2^{-2}+2\right)=9.2^6\)
\(2^x.\frac{9}{4}=9.2^6\)
\(2^x=4.2^6\)
\(2^x=2^8\)
\(\Rightarrow x=8\)
d)\(3^{-2}.3^4.3^x=3^7\)
\(3^{-2+4+x}=3^7\)
\(3^{2+x}=3^7\)
\(\Rightarrow2+x=7\Leftrightarrow x=5\)
Vậy.........