Bài 1: Cho dường tròn tâm O đường kính AB; M là một điểm di động trên đường tròn( m khác A và B). Dựng đường tròn tâm M tiếp xúc với Ab tại H. Từ A và B kể tiếp tuyến BD và AC đến đường tròn tâm M.
a)Xác định vị trí tương đối của đường thẳng CD và đường tròn tâm O.
b) Tìm vị trí của M trên (O) để AC.BD đạt ghía trị lớn nhất.
c).lấy N là điểm cố định trên đường tròn (O); Gọi I là trung điểm của MN; P là hình chiếp của I trên MB; Khi M di chuyển trên (O) thì P chạy trên đường nào
Bài 1: Cho dường tròn tâm O đường kính AB; M là một điểm di động trên đường tròn( m khác A và B). Dựng đường tròn tâm M tiếp xúc với Ab tại H. Từ A và B kể tiếp tuyến BD và AC đến đường tròn tâm M.
a)Xác định vị trí tương đối của đường thẳng CD và đường tròn tâm O.
b) Tìm vị trí của M trên (O) để AC.BD đạt ghía trị lớn nhất.
c).lấy N là điểm cố định trên đường tròn (O); Gọi I là trung điểm của MN; P là hình chiếp của I trên MB; Khi M di chuyển trên (O) thì P chạy trên đường nào
Bài 1: Cho (O,R) và điểm A nằm trong đường tròn đó (A ko trùng với O). B là 1 điểm chuyển động trên (O), M là trung điểm của AB. Khi B di chuyển trên (O) thì M di chuyển trên đường nào ?
Bài 2: Cho Hình Bình Hành có cạnh AB cố định, đường chéo AC = 2 cm. CMR: Điểm D di động trên 1 đường tròn cố định
Bài 1: Cho (O,R) và điểm A nằm trong đường tròn đó (A không trùng với O). B là 1 điểm chuyển động trên (O), M là trung điểm của AB. Khi B di chuyển trên (O) thì M di chuyển trên đường nào ?
Bài 2: Cho Hình Bình Hành có cạnh AB cố định, đường chéo AC = 2 cm. CMR: Điểm D di động trên 1 đường tròn cố định
Cho đường tròn tâm O và dây cung BC không đi qua O. Một điểm A chuyển động trên dường tròn (A khác B, C). Gọi M là trung điểm của đoạn AC, H là chân đường vuông góc hạ từ M xuống đường thẳng AB. Chứng minh rằng H nằm trên một đường tròn cố định.
Cho đường tròn tâm O, bán kính R. AB là 1 dây cung cố định và AB = R nhân căn 3. M là trung điểm của AB. C là điểm chuyển động trên cung AB. I là trung điểm của AC. H là hình chiếu của I trên BC
a. Cmr: Điểm I thuộc đường tròn bán kính OB
b. Tính góc AOB và độ dài đoạn thẳng OM theo R
c. Cmr: I thuộc 1 đường cố định
d. Cmr: Đường thẳng IH đi qua 1 điểm cố định
e. Cmr: H thuộc 1 đường thẳng cố định
f. Xác định vị trí điểm C sao cho diện tích OBCA lớn nhất
Cho (O;R) có đường kính AB. Điểm C cố định trên đoạn AB (C khác A, C khác B). Một dây cung PQ thay đổi luôn đi qua điểm C và không trùng với AB. Các đường thẳng BP, BQ cắt tiếp tuyến các đường tròn (O) tại A lần lượt ở H và K. CMR:
a) AH.AK không đổi
b) Tứ giác PHKQ nội tiếp một đường tròn có tâm nằm trên một đường thẳng cố định.
Cho đường tròn tâm O,đường AB cố định.H là điểm cố định thuộc đoạn OA (H ko trùng O và A).Qua H vẽ đường thẳng vuông góc với AB cắt đường tròn O tại C và D.Gọi K là điểm tùy ý thuộc cung lớn CD(K ko trùng các điểm C,D và B).I là giao điểm của AK và CD
Chứng Minh : khi K thay đổi trên cung lớn CD của đường tròn tâm O thì tâm đường tròn ngoại tiếp tam giác KCI luôn thuộc 1 đường thẳng cố định
Cho đường tròn (O,R) và một điểm A cố định thuộc đường tròn. Trên tiếp tuyến với đường tròn (O) tại A , lấy một điểm k cố định. Một đường thẳng d thay đổi đi qua K và không đi qua tâm O, cắt (O) tại hai điểm B và C (B nằm giữa K và C). Gọi M là trung điểm của BC. 1)CMR 4 điểm A,O,M,K cùng nằm trên một đường tròn ,2)CMR KA bình phương =KB.KC=KO bình phương - R bình phương