\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=3y+2y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
\(\Rightarrow\frac{2x+2y-3y}{x+y}=\frac{2}{3}\)
\(\Rightarrow\frac{2\left(x+y\right)-3y}{x+y}=\frac{2}{3}\)
\(\Rightarrow2-\frac{3y}{x+y}=\frac{2}{3}\)
\(\Rightarrow\frac{3y}{x+y}=2-\frac{2}{3}\)
\(\Rightarrow\frac{3y}{x+y}=\frac{4}{3}\)
\(\Rightarrow3y.3=\left(x+y\right).4\)
\(\Rightarrow9y=4x+4y\)
\(\Rightarrow5y=4x\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)