\(n^2+1234=k^2\)
\(\Leftrightarrow k^2-n^2=1234\)
\(\Leftrightarrow\left(k-n\right)\left(k+n\right)=1234=2.617\)
Ta có bảng giá trị:
k-n | 1 | 2 |
k+n | 1234 | 617 |
k | 1235/2 (loại) | 619/2 (loại) |
n |
Vậy không tồn tại số tự nhiên \(n\)thỏa mãn ycbt.
\(n^2+1234=k^2\)
\(\Leftrightarrow k^2-n^2=1234\)
\(\Leftrightarrow\left(k-n\right)\left(k+n\right)=1234=2.617\)
Ta có bảng giá trị:
k-n | 1 | 2 |
k+n | 1234 | 617 |
k | 1235/2 (loại) | 619/2 (loại) |
n |
Vậy không tồn tại số tự nhiên \(n\)thỏa mãn ycbt.
Tìm tất cả các số tự nhiên n sao cho 1! + 2! + 3! + 4! +.....+ n! là số chính phương.
Tìm n thuộc N sao cho các chữ số sau là số chính phương :
n2 +1234
tìm tất cả các số tự nhiên n sao cho (3n+1) là 1 số chính phương
Tìm tất cả các số tự nhiên n sao cho (3n+1) là 1 số chính phương.
a) Tìm tất cả các cặp số nguyên sao cho tổng bằng tích
b) Tìm số tự nhiên n (n > 0) sao cho tổng A = 1!+ 2!+ 3!+...+ n! là một số chính phương.
1)Có bao nhiêu ước là số chính phương của số
\(A=1^9.2^8.3^7.4^6.5^5.6^4.7^3.8^29^1\)
2)Tìm tất cả các số tự nhiên n sao cho các số n+50 va n-50 là số chính phương.
3)Tìm tất cả các số nguyên tố p sao cho 17p+1 là số chính phương.
4)a)Chứng minh rằng một số nguyên biểu diễn dưới dạng hai số chính phương khi và chỉ khi nó là một số lẻ hoặc chia hết cho 4.
b)Có bao nhiêu số tự nhiên từ 1 đến 2016 là hiệu của 2 số chính phương
Nếu có số tự nhiên k sao cho k =n^2 thì ta nói k là số chính phương .Tìm tất cả các số ab sao cho (ab+ba) là số chính phương .
- HELP ME ^-^ -
Tìm tất cả các số tự nhiên n sao cho ( 3n + 1) là một số chính phương
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.