Vì pq +11 là số nguyên tố \(\Rightarrow\)pq +11 là số lẻ \(\Rightarrow\)pq là số chẵn \(\Rightarrow\)p \(⋮\)2 hoặc q\(⋮\)2
p\(⋮\)2 mà q là số nguyên tố \(\Rightarrow\)q = 2thay p = 2 vào 7p +q ta đc 14+ q mà 7p +q là số nguyên tố \(\Rightarrow\)14+q là số nguyên tố
\(\Rightarrow\)14+q ko chia hết cho 3 mà 14 chia 3 dư 2 \(\Rightarrow\)q \(⋮\)3 hoặc q chia 3 dư 2
q chia 3 dư 2 \(\Rightarrow\)q có dạng 3k+2 (k là số tự nhiên)thay q=3k+2;p=2 vào pq +11 ta đc
2(3k+2)+11=6k+4+11=6k+15=3(2k+5)\(⋮\)3 và 3(2k+5) > 3 (KTM vì pq +11 là số nguyên tố)
q \(⋮\)3\(\Rightarrow\)q có dạng 3a(a là số tự nhiên)mà q là số nguyên tố \(\Rightarrow\)q =1
2. chứng minh tương tự
đúng thì k nha
Gúp mình nhanh lẹ nhá AI NHANH K CHO