\(3n⋮n+1\)
=>\(3n+3-3⋮n+1\)
=>\(-3⋮n+1\)
=>\(n+1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{0;-2;2;-4\right\}\)
Ta có : 3n ⋮ n + 1
=> (3n + 3) - 3 ⋮ n + 1
=> 3(n + 1) - 3 ⋮ n + 1
Vì 3(n + 1) ⋮ n + 1 nên 3 ⋮ n + 1
=> n + 1 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-4;-2;0;2}