tìm tất cả các cặp số nguyên (a,b) thỏa mãn 4a+1 và 4b-1 nguyên tố cùng nhau và a+b là ước của 16ab+1
tìm mọi cặp số nguyên dương (M;N) thỏa mãn tất cả các điều kiện:
1) M và N là những số nguyên dương có bốn chữ số;
2) M và N là những số chính phương;
3) Chỉ có hai cặp số tương ứng ở cùng một vị trí của M và N bằng nhau;
4) Với các chữ số còn lại, chữ số của M lớn hơn chữ số tương ứng cùng vị trí của N là 1 đơn vị
Ví dụ (M;N)=(2601;2500)
1/ Cho số nguyên dương n thỏa n và 10 là 2 số nguyên tố cùng nhau . CMR (n^4 - 1) chia hết cho 40
2/ Tìm tất cả các số nguyên tố p và các số nguyên dương x, y thỏa {p-1=2x(x+2) {p^2 -1= 2y(y+2)
3/ Tìm tất cả các số nguyên dương n sao cho tồn tại các sô nguyên dương ,y,z thỏa mãn x^3+y^3+z^3=nx^2 y^2 z^2
Bài 1: Tìm 6 SNT thỏa mãn \(p_1^2+p_2^2+p_3^2+p_4^2+p_5^2=p_6^2\)
Bài 2: Tìm SNT p để \(\frac{p+1}{2}\)và \(\frac{p^2+1}{2}\)là số chính phương
Bài 3: Tìm tất cả các cặp số nguyên dương (a,b) thỏa mãn đồng thời 2 điều kiện 4a+1 và 4b-1 nguyên tố cùng nhau; a+b là ước của 16ab+1
Tìm tất cả các số nguyên dương m,n thỏa mãn: \(n^2+n+1=\left(m^2+m-3\right)\left(m^2-m+5\right)\)
Tìm tất cả các số nguyên dương n thỏa mãn \(n^n+1\)là số nguyên tố và \(n^n+1< 10^{19}\)
Với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó. Ví dụ, d(2018) = 4 vì 2018 có (và chỉ có) 4 ước nguyên dương là 1; 2; 1009; 2018 và s(2018) = 1 + 2 + 1009 + 2018 = 3030. Tìm tất cả các số nguyên dương x sao cho s(x) . d(x) = 96