Chọn B
Đặt ta có để hàm số nghịch biến trên khoảng thì .
Th1: .
Th2: để thì hay .
Th3: để thì hay .
Vậy .
Chọn B
Đặt ta có để hàm số nghịch biến trên khoảng thì .
Th1: .
Th2: để thì hay .
Th3: để thì hay .
Vậy .
Tìm tất cả giá trị thực của tham số m sao cho hàm số y = f ( x ) = m - 2 sin x 1 + cos 2 x nghịch biến trên khoảng (0; π / 6 )
A..
B..
C..
D..
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y= (m-3)x- (2m+1).cos x luôn nghịch biến trên R?
A. - 4 ≤ m ≤ 2 3
B. m> 2
C. m > 3 m ≠ 1
D. m<2
Tìm tất cả các giá trị thực của tham số m để hàm số y = - x 3 + 2 x 2 - ( m - 1 ) x + 2 nghịch biến trên khoảng (-∞;+∞)
A. m ≤ 7 3
B. m ≥ 7 3
C. m ≥ 1 3
D. m > 7 3
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x + 2 m + 1 x - m nghịch biến trên khoảng (0;+¥)
Tìm tất cả các giá trị thực của tham số m để hàm số y = sin x + m sin x - 1 nghịch biến trong khoảng ( π 2 ; π )
A.
B.
C.
D.
Tìm tất cả các giá trị thực của tham số m để hàm số y = m x - 4 m - x nghịch biến trên khoảng (-3;1)
Tìm tất cả các giá trị thực của tham số m để hàm số y = x + 2 - m x + 1 nghịch biến trên các khoảng mà nó xác định?
A. m ≤ -1
B. m < 1.
C. m < -3.
D. m ≤ -3
Tìm tất cả các giá trị thực của tham số m để hàm số y = x + 2 - m x + 1 nghịch biến trên mỗi khoảng xác định của nó.
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(sin x) = m có nghiệm thuộc khoảng 0 ; π là