Chọn B.
Tập xác định D = R, yêu cầu của bài toán đưa đến giải bất phương trình
Tương đương với
Dễ dàng có được g(x) là hàm tăng
Chọn B.
Tập xác định D = R, yêu cầu của bài toán đưa đến giải bất phương trình
Tương đương với
Dễ dàng có được g(x) là hàm tăng
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = f ( x ) = m x 3 3 + 7 m x 2 + 14 x - m + 2 giảm trên nửa khoảng [ 1 ; + ∞ ) ?
A. - ∞ ; - 14 15
B. ( - ∞ ; - 14 15 ]
C. - 2 ; - 14 15
D. [ - 14 15 ; + ∞ )
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x - m + 2 x + 1 giảm trên các khoảng mà nó xác định ?
A. m < - 3.
B. m ≤ - 3.
C. m ≤ 1.
D. m < 1 .
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x - m + 2 x + 1 giảm trên các khoảng mà nó xác định ?
A. m < 1
B. m ≤ -3
C. m ≤ 1
D. m < -3
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x - m + 2 x + 1 giảm trên các khoảng mà nó xác định ?
A. m<-3
B. m ≤ -3
C. m ≤ 1
D. m < 1
Cho hàm số y = f(x) xác định trên R\{2}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ:
Tìm tập hợp tất cả các giá trị thực của tham số m sao cho phương trình f(x) = m có 3 nghiệm thực phân biệt.
Cho hàm số f ( x ) = 5 x - 1 - 2 x - 1 k h i x > 1 m x + m + 1 4 k h i x ≤ 1 (m là tham số). Giá trị của m để hàm số liên tục trên R là:
A. .
B. .
C. .
D. .
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Cho hàm số f ( x ) = x + 4 - 2 x k h i x > 0 m x 2 + 2 m + 1 4 k h i x ≤ 0 , m là tham số. Tìm giá trị của m để hàm số liên tục tại x=0.
A. .
B. .
C. .
D. .
Cho hàm số f(x) có đạo hàm trên khoảng 0 ; + ∞ và f(x)>0, ∀ x ∈ 0 ; + ∞ thỏa mãn f ' x = - x . f 2 x ∀ x ∈ 0 ; + ∞ , biết f 1 = 2 a + 3 và f 2 > 1 4 . Tổng tất cả các giá trị nguyên của a thỏa mãn là
A. -14.
B. 1.
C. 0.
D. -2.