Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Tìm tất cả các giá trị thực của tham số m để phương trình sau có nghiệm  x ∈ [ 1 ; 2 ] .

x 4 + 16 x 4 + 4 ( x 2 + 4 x 2 ) - 12 ( x - 2 x ) = m

A.  - 13 ≤ m ≤ 11

B.  - 15 ≤ m ≤ 9

C.  - 15 < m < 9

D.  - 16 ≤ m ≤ 9

Cao Minh Tâm
25 tháng 12 2018 lúc 15:15

Đáp án là  B.

Đặt t = x - 2 x  Đạo hàm  t , = 1 + 2 x 2 >   0

Do đó t ( 1 ) ≤ t ≤ t ( 2 ) , ∀ x ∈ [ 1 ; 2 ] , suy ra  - 1 ≤ t ≤ 1

Ta có  x 2 + 4 x 2 = t 2 + 4 , x 4 + 16 x 4 = ( x 2 + 4 x 2 ) 2 - 8 = ( t 2 + 4 ) 2 - 8 = t 4 + 8 t 2 + 8

Phương trình đã cho trở thành

t 4 + 8 t 2 + 8 - 4 ( t 2 + 4 ) - 12 t = m ⇔ t 4 + 4 t 2 - 12 t = m + 8   ( * )

Phương trình đã cho có nghiệm trong đoạn [1;2] khi và chỉ khi phương trình (*) có nghiệm trong [-1;1] Xét hàm số y=f(t)= t 4 + 4 t 2 - 12 t  trên [-1;1]

Đạo hàm  y , = 4 t 8 + 8 t - 12 ,   t ∈ ( - 1 ; 1 ) . y , = 4 ( t - 1 ) ( t 2 + t + 3 ) < 0 , ∀ t ∈ ( - 1 ; 1 )

Bảng biến thiên:

Do đó để phương trình đã cho có nghiệm trên [1;2] thì  - 7 ≤ m + 8 ≤ 17 ⇔ - 15 ≤ m ≤ 9


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết