Đáp án B
Có y ' = 3 x 2 + 6 x + m
Hám số đồng biến trên R ⇔ y ' ≥ 0 , ∀ x ∈ R ⇔ � ' = 9 − 3 m ≤ 0 ⇔ m ≥ 3
Đáp án B
Có y ' = 3 x 2 + 6 x + m
Hám số đồng biến trên R ⇔ y ' ≥ 0 , ∀ x ∈ R ⇔ � ' = 9 − 3 m ≤ 0 ⇔ m ≥ 3
Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x 2 + 3 - m ( x + 1 ) đồng biến trên khoảng ( - ∞ ; + ∞ )
A. [ 1 ; + ∞ )
B. [ - 1 ; 1 ]
C. ( - ∞ ; - 1 ]
D. ( - ∞ ; 1 )
Cho hàm số y = 2 x 3 - 3 m x 2 + 3 ( 5 m 2 + 1 ) x - 3 s i n x với m là tham số thực. Tìm tập hợp tất cả các giá trị của m để hàm số đồng biến trên (l;3).
A . m ≥ 1
B . m ≤ - 1
C . m > 0
D . m ∈ R
Tìm tất cả các giá trị nguyên dương nhỏ hơn 5 của tham số m để hàm số y = 1 3 x 3 + ( m - 1 ) x 2 + ( 2 m - 3 ) x - 2 3 đồng biến trên khoảng (1;+∞)
A. 5
B. 3
C. 6
D. 4
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y = m cos x + 1 cos x + m đồng biến trên khoảng 0 ; π 3
A. - 1 ; 1
B. - ∞ ; - 1 ∪ 1 ; + ∞
C. [ - 1 ; - 1 2 )
D. - 1 ; - 1 2
Tìm tất cả các giá trị tham số m để hàm số y = - 1 3 x 3 + ( m - 1 ) x 2 + ( m + 3 ) x - 4 đồng biến trên (0;3)
A. m ≥ 1 7
B. m ≥ 4 7
C. m ≥ 8 7
D. m ≥ 12 7
Biết rằng tập hợp tất cả các giá trị thực của tham số m để hàm số y = 1 3 x 3 − m − 1 x 2 − m − 3 x + 2017 m đồng biến trên các khoảng ( − 3 ; − 1 ) và ( 0 ; 3 ) là đoạn T = a ; b . Tính a 2 + b 2
A. a 2 + b 2 = 10
B. a 2 + b 2 = 13
C. a 2 + b 2 = 8
D. a 2 + b 2 = 5
Tìm tất cả các giá trị thực của tham số m để hàm số y = x + m x + 1 đồng biến trên từng khoảng xác định của nó
A. m < 1
B. m ≤ 1
C. m = 1
D. m > 1
Cho hàm số y = 1 3 x 3 + 2 x 2 + ( m + 2 ) x - m . Tìm tập hợp S tất cả các giá trị thực của tham số m để hàm số đồng biến trên ℝ
A. S = ( - ∞ ; 2 ]
B. S = ( - ∞ ; 2 )
C. S = [ 2 ; + ∞ )
D. S = ( 2 ; + ∞ )
Tìm tất cả các giá trị thực của tham số m để hàm số y = m x + 1 x + m đồng biến trên khoảng 1 ; + ∞ .
A. m > 1
B. m < − 1 m > 1
C. − 1 < m < 1
D. m ≥ 1
Tìm tập hợp S tất cả các giá trị của tham số thực m để hàm số y = 1 3 x 3 − m + 1 x 2 + m 2 + 2 m x − 3 nghịch biến trên khoảng (-1;1).
A. S = − 1 ; 0
B. S = ∅
C. S = − 1
D. S = 0 ; 1