Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Công Thanh Tài

Tìm tất cả các giá trị của tham số m để phương trình x^2+2x+m=0 có hai nghiệm x1, x2 thỏa mãn \(\dfrac{x_1^2-3_{x_1}+m}{x_2}+\dfrac{x_2^2-3_{x_2}+m}{x_1}\le2\)

\(\text{Δ}=2^2-4\cdot1\cdot m=4-4m\)

Để phương trình có hai nghiệm thì Δ>=0

=>-4m+4>=0

=>-4m>=-4

=>m<=1(1)

Theo Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

\(\dfrac{x_1^2-3x_1+m}{x_2}+\dfrac{x_2^2-3x_2+m}{x_1}< =2\)

=>\(\dfrac{x_1^3+x_2^3-3\left(x_1^2+x_2^2\right)+m\left(x_1+x_2\right)}{x_1x_2}< =2\)

=>\(\dfrac{\left(x_1+x_2\right)^3-3x_1x_2-3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+m\left(x_1+x_2\right)}{x_1x_2}< =2\)

=>\(\dfrac{\left(-2\right)^3-3\cdot m-3\left[\left(-2\right)^2-2m\right]+m\cdot\left(-2\right)}{m}< =2\)

=>\(\dfrac{-8-3m-3\left(4-2m\right)-2m}{m}-2< =0\)

=>\(\dfrac{-5m-8-12+6m}{m}-2< =0\)

=>\(\dfrac{m-20-2m}{m}< =0\)

=>\(\dfrac{-m-20}{m}< =0\)

=>\(\dfrac{m+20}{m}>=0\)

=>\(\left[{}\begin{matrix}m>0\\m< =-20\end{matrix}\right.\)

Kết hợp (1), ta được: \(\left[{}\begin{matrix}0< m< =1\\m< =-20\end{matrix}\right.\)


Các câu hỏi tương tự
Dương Thị Thu Hiền
Xem chi tiết
Giáp Văn Long
Xem chi tiết
Trần Thu Huyền
Xem chi tiết
Vũ Việt Đức
Xem chi tiết
Kaori Miyazono
Xem chi tiết
Tai Lam
Xem chi tiết
Trần Anh Tuấn
Xem chi tiết
Hiếu
Xem chi tiết
Vũ Việt Đức
Xem chi tiết