\(\text{Δ}=2^2-4\cdot1\cdot m=4-4m\)
Để phương trình có hai nghiệm thì Δ>=0
=>-4m+4>=0
=>-4m>=-4
=>m<=1(1)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
\(\dfrac{x_1^2-3x_1+m}{x_2}+\dfrac{x_2^2-3x_2+m}{x_1}< =2\)
=>\(\dfrac{x_1^3+x_2^3-3\left(x_1^2+x_2^2\right)+m\left(x_1+x_2\right)}{x_1x_2}< =2\)
=>\(\dfrac{\left(x_1+x_2\right)^3-3x_1x_2-3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+m\left(x_1+x_2\right)}{x_1x_2}< =2\)
=>\(\dfrac{\left(-2\right)^3-3\cdot m-3\left[\left(-2\right)^2-2m\right]+m\cdot\left(-2\right)}{m}< =2\)
=>\(\dfrac{-8-3m-3\left(4-2m\right)-2m}{m}-2< =0\)
=>\(\dfrac{-5m-8-12+6m}{m}-2< =0\)
=>\(\dfrac{m-20-2m}{m}< =0\)
=>\(\dfrac{-m-20}{m}< =0\)
=>\(\dfrac{m+20}{m}>=0\)
=>\(\left[{}\begin{matrix}m>0\\m< =-20\end{matrix}\right.\)
Kết hợp (1), ta được: \(\left[{}\begin{matrix}0< m< =1\\m< =-20\end{matrix}\right.\)