Có tất cả bao nhiêu số nguyên m để phương trình log ( m - x ) = 3 log ( 4 - 2 x - 3 ) có hai nghiệm thực phân biệt.
A. 6.
B. 2.
C. 3.
D. 5.
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
A. 4.
B. 3.
C. 1.
D. 2.
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Tìm tất cả giá trị của m để phương trình x 4 - 2 ( m + 1 ) x 2 + m 2 - 3 = 0 có 4 nghiệm thực phân biệt?
A . ( 3 ; + ∞ )
B . [ 3 ; + ∞ )
C . ( 1 ; 6 )
D . [ 1 ; 6 )
Có tất cả bao nhiêu giá trị nguyên hàm của tham số m để phương trình 4 x 2 - 3 . 2 x 2 + 1 + m - 3 = 0 có 4 nghiệm phân biệt.
A. 3
B. 9
C. 12
D. 4
Tìm tất cả các giá trị thực của tham số m để phương trình x 4 − 2 x 2 − 3 = m có 4 nghiệm phân biệt.
A. -1 < m < 1
B. m < -4
C. -4 < m < -3
D. m > -1
Tìm tập hợp T tất cả các giá trị của tham số m để phương trình 4 x + 1 - m . 2 x + 2 + 4 = 0 có hai nghiệm phân biệt.
A. T=(-∞;2)
B. T = ( - ∞ ; - 2 ) ∪ ( 2 ; + ∞ )
C. T=(-2;2)
D. T=(2;+∞)
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3