Ta có bất phương trình x 2 - 3x + 2 ≤ 0 ⇔ 1 ≤ x ≤ 2.
Yêu cầu bài toán tương đương với bất phương trình:
m x 2 – 2(2m + 1)x + 5m + 3 ≤ 0 (1) có nghiệm x ∈ S = [1;2].
Ta đi giải bài toán phủ định là: Tìm m để bất phương trình (1) vô nghiệm trên S
Tức là bất phương trình f(x) = m x 2 - 2(2m + 1)x + 5m + 3 < 0 (2) đúng với mọi x ∈ S.
• m = 0 ta có (2) -2x + 3 < 0 ⇔ x > 3/2 nên (2) không đúng với ∀x ∈ S
• m ≠ 0 tam thức f(x) có hệ số a = m, biệt thức Δ' = - m 2 + m + 1
Bảng xét dấu