Đáp án D
Ta có : y = 3 sin 2 x + cos 2 x sin 2 x + 4 cos 2 x + 1 = 3 sin 2 x + cos 2 x sin 2 x + 2 cos 2 x + 3
và sin 2 x + 2 cos 2 x + 3 > 0 ; ∀ x ∈ ℝ
xét phương trình
y = 3 sin 2 x + cos 2 x sin 2 x + 2 cos 2 x + 3
⇔ sin 2 x + 2 cos 2 x + 3 y = 3 sin 2 x + cos 2 x ⇔ y − 3 sin 2 x + 2 y − 1 cos 2 x = − 3 y
Phương trình trên có nghiệm nên
y − 3 2 + 2 y − 1 2 ≥ − 3 y 2 ⇔ 5 y 2 − 10 y + 10 ≥ 9 y 2
⇔ − 4 y 2 − 10 y + 10 ≥ 0 ⇔ − 5 − 65 4 ≤ y ≤ − 5 + 65 4
Suy ra giá trị lớn nhất của y là − 5 + 65 4
Phương trình 3 sin 2 x + cos 2 x sin 2 x + 2 cos 2 x + 3 ≤ m + 1 nghiệm đúngg với mọi số thực x khi
− 5 + 65 4 ≤ m + 1 ⇔ m ≥ − 9 + 65 4