Tìm tất cả các đa thức \(f\left(x\right)\) thỏa mãn: \(f\left(x\right)=a.f\left(1-x\right)=x\left(a-1\right)\) với mọi giá trị của \(x\), biết \(a\ne\left\{0;\pm1\right\}\).
cho đa thức f(x) xác định với mọi x thỏa mãn:
\(x\cdot f\left(x+2\right)=\left(x^2-9\right)\cdot f\left(x\right)\)
a) tính giá trị của f(5)
b) CMR ;đa thức f(x) có ít nhất 3 nghiệm
1. Tìm giá trị lớn nhất của biểu thức 7lx-3l-l4x+8l-l2-3xl
2. Cho hàm số f(x) xác định với mọi x \(\varepsilon\)Q. Cho f(a+b) =f(a.b) với mọi a, b và f(2011) = 11. Tìm f(2012)
3.Cho hàm số f thỏa mãn f(1) =1; f(2) = 3; f(n) +f(n+2) = 2f(n+1) với mọi số nguyên dương n. Tính f(1) + f(2) + f(3)+...+f(30)
4. Tính giá trị của biểu thức \(\left(\frac{3}{4}-81\right)\left(\frac{^{3^2}}{5}-81\right)\left(\frac{3}{6}^3-81\right)...\left(\frac{3}{2014}^{2011}-81\right)\)
5. Đa thức P(x) cộng với đa thức Q(x) = \(x^3-2x^2-1\) được đa thức \(^{x^2}\). Tìm hệ số tự do của P(x)
6. Cho a, b, c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-a+c}{2a-3}=\frac{2}{3}\). Tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4a\right)^2\left(a+3c\right)^3}\)
Cho đa thức \(f\left(x\right)\)thỏa mãn:\(\left(x-1\right).f\left(x\right)=\left(x+2\right).f\left(x+3\right)\)với mọi x.Tìm 5 nghiệm của f(x)
Cho đa thức: f( x ) = \(2\cdot\left(x^2\right)^n-5\cdot\left(x^n\right)^2+8\cdot x^{n-1}\cdot x^{1+n}-4\cdot x^{n^2+1}\cdot x^{2\cdot n-n^2-1}\left(n\inℕ\right)\)
a, Thu gọn đa thức f(x)
b, Tìm giá trị nhỏ nhất của f(x) + 2020
Bài 1 : Giá trị của a trong công thức của hàm số y = f(x) = ax biết |x| và f(1) > f(2) là ...
Bài 2 : Số các giá trị của x thỏa mãn \(\frac{\left|x-5\right|}{\left|x-3\right|}=\frac{\left|x-1\right|}{\left|x-3\right|}\) là ...
Cho đa thức f(x) thỏa mãn:
\(\left(x-1\right).f\left(x\right)=\left(x+2\right).f\left(x+3\right)\) với mõ c.Tìm 5 nghiệm của đa thức f(x)
Cho hàm số \(f\left(x\right)\)thỏa mãn \(\left(x+1\right)f\left(x\right)+3f\left(1-x\right)=2x+7\)với mọi giá trị của \(x\). Tính \(f\left(0\right)\)và \(f\left(1\right)\)
Cho đa thức f(x) thỏa mãn \(\left(x^2-25\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)
Cmr f(x) có ít nhất 3 nghiệm