∫ 1 e ln n x d x = ∫ 1 e ln n - ln x d x = x ln n 1 e - ∫ 1 e ln x d x = e - 1 ln n - x ln x - x 1 e = e - 1 ln n - 1
Với n = 1 ta có I = -1 < e - 2.
Với n = 2 ta có I = eln2 - ( ln2 + 1 )
= ( e - 1 )ln2 - 1 < e - 1 -1 = e - 2
Đáp án C
∫ 1 e ln n x d x = ∫ 1 e ln n - ln x d x = x ln n 1 e - ∫ 1 e ln x d x = e - 1 ln n - x ln x - x 1 e = e - 1 ln n - 1
Với n = 1 ta có I = -1 < e - 2.
Với n = 2 ta có I = eln2 - ( ln2 + 1 )
= ( e - 1 )ln2 - 1 < e - 1 -1 = e - 2
Đáp án C
Gọi S là tập hợp số nguyên dương k thỏa mãn điều kiện: ∫ 1 e ln k x d x < e - 2 . Số phần tử của tập S là
A. 2
B. 1
C. 3
D. 0
Cho hàm số y = x 3 - 3 x có đồ thị (C). Gọi S là tập hợp tất cả các giá trị thực của k để đường thẳng d : y = k ( x + 1 ) + 2 cắt đồ thị (C) tại ba điểm phân biệt M, N, P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Biết M (-1;2), tính tích tất cả các phần tử của tập S
A. 1 9
B. - 2 9
C. 1 3
D. -1
Cho hàm số y = x 3 - 3 x có đồ thị (C). Gọi S là tập hợp tất cả các giá thực của k để đường thẳng y = k(x+1)+2 cắt đồ thị (C) tại ba điểm phân biệt M, N, P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Biết M(-1;2), tính tích tất cả các phần tử của tập S.
A. 1/9
B. -2/9
C. 1/3
D. -1.
Cho hàm số y = ln 2 x - a - 2 m ln 2 x - a + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0 (với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thỏa mãn M a x 1 ; e 2 y = 1 . Số phần tử của S là:/
A. 0
B. 1
C. 2
D. Vô số
Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2
Cho hàm số y = x 3 - 3 x có đồ thị (C). Gọi S là tập hợp tất cả các giá trị thực của k để đường thẳng y = k x + 1 + 2 cắt đồ thị (C) tại ba điểm phân biệt M, N, P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Biết M(-1;2), tính tích tất cả các phần tử của tập S.
A. 1 9
B. - 2 9
C. 1 3
D. -1
Cho hàm số y = x 3 − 3 x có đồ thị (C). Gọi S là tập hợp tất cả các giá trị thực của k để đường thẳng y = k x + 1 + 2 cắt đồ thị (C) tại ba điểm phân biệt M − 1 ; 2 , N , P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Tính tích tất cả các phần tử của tập S.
A. − 2 9
B. 1 3
C. 1 9
D. -1
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đường thẳng d: y=-x+m cắt đồ thị hàm số y = - 2 x + 1 x + 1 tại hai điểm phân biệt A, B sao cho A B ≤ 2 2 . Tổng giá trị tất cả các phần tử của S bằng
A. -6
B. 0
C. 9
D. -27
Cho hàm số y = x - m x - 1 có đồ thị là và C m điểm A(-1;2). Gọi S là tập hợp tất cả các giá trị thực của m để có đúng một tiếp tuyến của đi qua A. Tổng tất cả các phần tử của S bằng.
A.1
B. 2
C. 3
D. 4