\(a⋮24\) hay \(BC\left(24\right)=a\)
\(BC\left(24\right)=\left\{\pm24;\pm48;\pm72;\pm96;\pm120;\pm144;\pm168;...;\pm480\right\}\)
\(a⋮80\) hay \(BC\left(80\right)=a\)
\(BC\left(80\right)=\left\{\pm80;\pm160;\pm240;...;\pm480\right\}\)
mà a thỏa mãn \(100< a< 500\)
nên \(a\in\left\{\pm240;\pm480\right\}\)
vậy \(a\in\left\{\pm240;\pm480\right\}\)
a chia hết cho 24, a chia hết cho 80 => a thuộc BC(24,80)
Ta có : 24 = 23.3
80 = 24.5
=> BCNN(24,80) = 24.3.5 = 240
=> BC(24,80) = B(240) = {0 ; 240 ; 480 ; 720 ; ....}
Vì 100< a<500 => a = { 240 ; 480 }
Ta có:
\(\orbr{\begin{cases}a⋮24\\a⋮80\end{cases}\Rightarrow a\in BC\left(24;80\right)}\)
\(BCNN\left(24;80\right)=\)
\(24=2^3.3\)
\(80=2^4.5\)
\(BCNN\left(24;80\right)=2^4.3.5=240\)
\(BC\left(24;80\right)=\left(0;240;480;720;..\right)\)
Vì \(100< a< 500\Rightarrow a=\left\{240;480\right\}\)