a: \(2^{x}\cdot4=128\)
=>\(2^{x}=\frac{128}{4}=32=2^5\)
=>x=5
b: \(x^{15}=x\)
=>\(x^{15}-x=0\)
=>\(x\left(x^{14}-1\right)=0\)
=>\(\left[\begin{array}{l}x=0\\ x^{14}-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x^{14}=1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\end{array}\right.\)
c: \(\left(2x+1\right)^3=125\)
=>\(\left(2x+1\right)^3=5^3\)
=>2x+1=5
=>2x=5-1=4
=>\(x=\frac42=2\)
d: \(\left(x-5\right)^4=\left(x-5\right)^6\)
=>\(\left(x-5\right)^6-\left(x-5\right)^4=0\)
=>\(\left(x-5\right)^4\cdot\left\lbrack\left(x-5\right)^2-1\right\rbrack=0\)
=>\(\left(x-5\right)^4\cdot\left(x-5-1\right)\left(x-5+1\right)=0\)
=>\(\left(x-5\right)^4\cdot\left(x-6\right)\left(x-4\right)=0\)
=>\(\left[\begin{array}{l}x-5=0\\ x-6=0\\ x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\\ x=6\\ x=4\end{array}\right.\)